Generalized Fibonacci-Like Polynomials and Some Identities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Bivariate Fibonacci-Like Polynomials and Some Identities

In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...

متن کامل

Some Generalized Fibonacci Polynomials

We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and rLucas sequences which arise in connection with two statistics defined, respectively, on linear, phased, and circular r-mino arrangements.

متن کامل

Binomial Identities Involving The Generalized Fibonacci Type Polynomials

We present some binomial identities for sums of the bivariate Fi-bonacci polynomials and for weighted sums of the usual Fibonacci polynomials with indices in arithmetic progression.

متن کامل

Some Identities for Generalized Fibonacci and Lucas Sequences

In this study, we define a generalization of Lucas sequence {pn}. Then we obtain Binet formula of sequence {pn} . Also, we investigate relationships between generalized Fibonacci and Lucas sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Global Journal of Mathematical Analysis

سال: 2014

ISSN: 2307-9002

DOI: 10.14419/gjma.v2i4.3126